INTRODUCTION

Leprosy is one of the oldest diseases in the world. This entity is known since 600BC in several oldest civilizations in China, India and Egypt [1]. Leprosy also known as Hansen’s disease is a chronic granulomatous disease caused by Mycobacterium leprae that was discovered by G.A Hansen [2]. Leprosy causes skin sores, peripheral nerve damage and muscle weakness that progressively become worse over time. It also affects the mucosa of the upper respiratory, eyes and other superficial parts of the body such as ear lobes. Transmission of this infection is directly related to overcrowding and poor hygiene. It occurs by direct contact and aerosol inhalation [2].

The prevalence of leprosy in the Western Pacific Region has declined by nearly 90% over the past 10 years [1]. In 2010, a total of 8386 cases were registered with a prevalence rate of 0.05 per 10,000 populations. Five countries (China, Malaysia, Papua New Guinea, the Philippines and Vietnam) contributed to 86% of the total prevalence [1]. In 2010, the incidence of leprosy was 0.3 per 100,000 populations [1] and there are about 250,000 new cases being detected every year [3]. It was decreased by 5.8% when compared with 2009 and decreased by 66% when compared with 1991. Five countries (Cambodia, China, Papua New Guinea, the Philippines and Vietnam) contributed to 84% of the newly detected cases in the Region [4].

In Malaysia, leprosy is still a public health problem [5]. The history of leprosy in Malaysia started over 300 years ago and was probably brought in by the immigrants. In order to control the disease from spreading, the government at the early period has enacted laws to forcibly isolate those suffering from the disease of leprosy from the other inhabitants. In 1969,
Functional Dependence and Nutritional Status

the National Leprosy Control programme was launched with the objective of early case identification and decentralisation of treatment of leprosy [6]. The leprosy patients were relocated to four leprosy asylums which were Pulau Jerejak, Pulau Pangkor, Tampoi, Pulau Seribun, Setapak and Kota Bharu that was known as “Old segregation camps” [6]. In 1985, the multiple drug therapy for leprosy have been implemented and the prevalence of leprosy has reduced from 5.7 per 10,000 in 1983 to 1.7 per 10,000 in 1992 [5].

In developing country, leprosy continues causing challenges through physical and social disabilities to the affected patients [7]. Leprosy can lead to a permanent disability. The World Health Organization (WHO) estimated that leprosy related disability occurs in approximately 25% of the infected patients (WHO, 2012). Study by Chvan and Patel [8] found that the WHO grade-II disability among leprosy patients was 12.4 % and hands and feet disabilities were found in 38.1 % while nobody had eye related disability. The study showed that most patients developed deformities and disabilities were due to lack of health education, delay in diagnosis and treatment [9].

Patients with leprosy are at increased risk of undernutrition. An increase in body mass index (BMI) was the cause of moderate to severe grades of malnutrition [10]. The presence of disability made the incidence of undernutrition more likely in these patients [11]. However, the relationship between nutrition and leprosy invasion is still unclear [7].

The objectives of this study were to determine the prevalence of disability; to evaluate the nutritional status and; to correlate the functional dependence and the nutritional status among leprosy survivors’ in Sungai Buloh, Malaysia.

METHODS

Study Design

A community based, cross-sectional study was conducted at Sungai Buloh, Selangor from June 2014 to July 2014. The leprosy survivors were invited to participate in the study. We excluded those who did not understand English and Malay languages. A convenience sampling was used in this study.

Method of Data Collection

Data was collected by using face-to-face interview and anthropometric measurement. Face to face interview was conducted to collect information about the patients’ demographic, assessment for functional dependence using Barthel’s Index [12] and assessment for nutritional status using Mini Nutritional Assessment (MNA) [13]. Some of the assessments of MNA need anthropometric measurement such as height, weight, mid upper arm and calf circumferences.

Study Instruments

There were two instruments used in this study which were Barthel’s Index (12) to assess the functional dependence and Mini Nutritional Assessment (MNA) (13) to assess the nutritional status of the patients.

Assessment for Functional Dependence

The functional dependence status was assessed using Barthel’s Index (BI) questionnaire [12]. BI consisted of ten questions measuring basic activities of daily living (ADL) such as feeding, dressing, grooming, bathing, control of urinary bladder, control of bowel, transfer to bed, using toilet, mobility and climbing stair. There were two answers in each question: “yes” when the patients can do the activities by themselves and “no” when the patients cannot do the activities by themselves and need help. All the scores for each question were summed together. The higher the score means the better the activities of daily living. The patients were categorized as having ‘normal function’ in doing an activity when they could perform all 10 activities independently and were categorized as having ‘functional disability’ when they had difficulty or needed help in performing one or more of the activities.

Assessment for Nutritional Status

The overall nutritional status was assessed by using Mini Nutritional Assessment (MNA) [13]. It was provided by Nestle HealthCare Nutrition, Sri Lanka. It consisted of 18 questions where each question gave points. Some questions were given score from 0 to 1; 0 to 2 and 0 to 3. The assessment was classified into 4 categories: anthropometric assessments (4 questions); general assessment (6 questions); dietary assessment (6 questions) and self-assessment (2 questions). For the anthropometric assessment, it measures the body mass
index, mid arm circumference, calf circumference and weight loss for the past three months. The classification of nutritional status was based on score. Score more than 24 points was considered well nourished; 17 to 23.5 was considered as at risk of malnutrition; and less than 17 was considered malnourished [13].

Anthropometric Measurement

The height was measured using a portable stadiometer. The patients stood with their back against the board. The arms hang freely by the side of the body with palms facing the thighs. The legs were positioned such that the knees and ankles were brought together. The position of the head was in horizontal plane. Then the headpiece was pushed down to the upper most point on the head by compressing the hair. Three consecutive readings were taken for each patient and the average height was recorded to the nearest 0.1 cm.

The weight was measured using a digital weighing scale. At the beginning, the weighing scale was turned to ‘zero’. The patient was asked to remove extra layers of clothing or any items in his/her pockets. The arms hang freely by the sides of the body with the palms facing the thighs and the head facing straight ahead. Three consecutive reading were taken for each patient and the average weight was recorded to the nearest 100 g.

Mid upper arm circumference (MUAC) was measured at the mid-point between the tip of the shoulder and elbow. During measurement, the left arm was bent and the olecranon and acromion process were identified and marked. The distance between these two points were measured and the mid-point was marked. With the arm hanging, a non-stretchable measuring tape was used to measure the MUAC at the mid-point mark. The circumference was measured to the nearest 1 mm.

Calf circumference was measured at the level of the widest circumference of the calf by using a non-stretchable measuring tape. The patients stood straight with the feet 20 cm apart and the weight equally distributed on both feet. The circumference was measured to the nearest 1 mm.

Data Analysis

Data has been checked before ending each interview session and before final compilation to ensure the completeness of the questionnaire. Raw data obtained was recorded and entered into the Statistical Package for Social Sciences (SPSS) Version 20.0. Cleaning for double entry and outliers was performed before the analysis. The dependent variables were functional dependence and the score of nutritional assessment. Some independent variables were kept as continuous while others were categorized into nominal or ordinal data. The independent variables were also classified into socio-demographic variables, daily life activities and deformities of the limbs.

The frequency distribution, measure of central tendencies and measure of distribution were produced. The normality of continuous data checked via Kolmogorov-Smirnov testing and plotting the histogram with normal curve. The significant level was pre-set at $\alpha = 0.05$. When the Kolmogorov-Smirnov test has a p-value of less than 0.05, then the null hypothesis which tested for the data normality distributed was rejected.

The normally distributed continuous data presented in the form of mean values with the corresponding standard deviations. For the non-normally distributed continuous data, it was presented in the form of median values and inter-quartile range (IQR). The categorical data presented in the form of absolute number and their corresponding percentages values.

Bivariate analysis was used to determine the possible correlation of significant variables to the nutritional assessment and functional dependence. The statistical tests used in the analysis depend on type of data in the dependent and independent variables.

RESULTS

A total 73 leprosy patients were involved in this study. Table 1 shows the characteristics and anthropometric measurements of the patients. There were only 47 (64.4%) patients involved in the measurements of weight, height and body mass index (BMI). This was due to the problem of being bedbound and lower limb amputation in the remaining patients.

Nutritional Status among Leprosy Patients

The mean (SD) of the nutritional index score was 22.06 (SD: 4.05). Based on the classification of the
malnutritional status, patients were malnourished in 9.6%, at risk of malnutrition in 49.3% and well-nourished in 41.1% of the cases.

Table 1 Characteristics and anthropometric measurements of the patients

<table>
<thead>
<tr>
<th>Variable</th>
<th>Frequency, n (%)</th>
<th>Mean (SD)</th>
<th>Median (IQR)*</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>44 (60.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>29 (39.7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Race:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malay</td>
<td>4 (5.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinese</td>
<td>65 (89.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indian</td>
<td>4 (5.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than 69</td>
<td>24 (32.9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70 – 79</td>
<td>30 (41.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>More than 80</td>
<td>19 (26.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (n = 47)</td>
<td>56.14 (13.82)</td>
<td>36.00 – 106.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height (n = 47)</td>
<td>153.48 (8.67)</td>
<td>133.00 – 170.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body Mass Index (n = 47)</td>
<td>22.77 (5.78)</td>
<td>16.65 – 40.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arm circumference</td>
<td>26.34 (0.48)</td>
<td>18.00 – 37.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calf circumference</td>
<td>31.52 (0.47)</td>
<td>23.50 – 44.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prevalence of Disability among Leprosy Patients

The prevalence of disability among leprosy patients was 56.2% (95% CI: 44.5 – 67.8). The median (IQR) score for the Barthel’s Index among leprosy patients was 9.00 (3.00). Table 2 shows the percentages of disabilities from the ten assessments in Barthel’s Index.

Table 2 Percentages of disabilities of the 10 assessments of Barthel’s Index

<table>
<thead>
<tr>
<th>Barthel’s Index</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walking up-stair (need help)</td>
<td>37 (50.7)</td>
</tr>
<tr>
<td>Mobility (needs help)</td>
<td>26 (35.6)</td>
</tr>
<tr>
<td>Bladder incontinence</td>
<td>12 (16.4)</td>
</tr>
<tr>
<td>Bowel incontinence</td>
<td>11 (15.1)</td>
</tr>
<tr>
<td>Transfer (needs help)</td>
<td>11 (15.1)</td>
</tr>
<tr>
<td>Toilet use (needs help)</td>
<td>8 (11.0)</td>
</tr>
<tr>
<td>Grooming (needs help)</td>
<td>6 (8.2)</td>
</tr>
<tr>
<td>Bathing (needs help)</td>
<td>6 (8.2)</td>
</tr>
<tr>
<td>Dressing (need help)</td>
<td>5 (6.8)</td>
</tr>
<tr>
<td>Feeding (needs help)</td>
<td>1 (1.4)</td>
</tr>
</tbody>
</table>

Correlation between Disability and Nutritional Status

Figure 1 below shows the scatter plot between Nutritional Index score and Barthel’s Index score. There was a significant negative strong correlation between Nutritional Index score and the Barthel’s Index score (spearman rho, $\rho = -0.714$, $p < 0.001$). It indicated that the risk of the disability among the leprosy survivors would increase if they suffered from malnutrition.

Figure 1 The scatter plot between Nutritional Index score and Barthel’s Index score ($\rho = -0.714$, $p < 0.001$)

Correlation between Disability and Nutritional Status Stratified by Gender, Race and Age

Table 3 below shows the correlation between disability and nutritional status stratified by gender, race and age. Overall, there was a significant moderate to strong negative correlations except for Malay and Indian. This could be due to the small sample size.

Table 3 Comparison of the in between variables for the gender, race and age for nutritional assessment score

<table>
<thead>
<tr>
<th>Variables</th>
<th>n</th>
<th>Nutritional Index score [Mean (SD)]</th>
<th>Barthel’s Index score [Median (IQR)]</th>
<th>Spearman rho correlation, ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>44</td>
<td>22.73 (4.15) 9.50 (2.00)</td>
<td>9.00 (3.00)</td>
<td>-0.657**</td>
</tr>
<tr>
<td>Female</td>
<td>29</td>
<td>21.05 (3.71) 9.00 (3.00)</td>
<td>10.00 (3.00)</td>
<td>-0.770**</td>
</tr>
<tr>
<td>Race:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malay</td>
<td>4</td>
<td>18.25 (2.10) 7.00 (3.75)</td>
<td>7.00 (3.75)</td>
<td>-0.632 (ns)</td>
</tr>
<tr>
<td>Chinese</td>
<td>65</td>
<td>22.32 (4.11) 9.00 (2.50)</td>
<td>9.00 (2.50)</td>
<td>-0.734**</td>
</tr>
<tr>
<td>Indian</td>
<td>4</td>
<td>21.63 (2.69) 8.50 (4.00)</td>
<td>8.50 (4.00)</td>
<td>-0.400 (ns)</td>
</tr>
<tr>
<td>Age (years):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 69</td>
<td>24</td>
<td>23.21 (3.45) 9.50 (2.00)</td>
<td>9.50 (2.00)</td>
<td>-0.551**</td>
</tr>
<tr>
<td>70 – 79</td>
<td>30</td>
<td>22.32 (4.86) 10.00 (3.00)</td>
<td>10.00 (3.00)</td>
<td>-0.776**</td>
</tr>
<tr>
<td>> 80</td>
<td>19</td>
<td>20.21 (2.61) 8.00 (2.00)</td>
<td>8.00 (2.00)</td>
<td>0.491*</td>
</tr>
</tbody>
</table>

* significant at $\alpha < 0.001$

** significant at $\alpha < 0.001$
ns: not significant
DISCUSSION

With the implementation of multiple drug therapy in 1985, the prevalence rate of leprosy in Malaysia has reduced from 5.7 per 10,000 in 1983 to 1.7 per 10,000 in 1992 [5]. In our study, Chinese was found to be the highest ethnic group with leprosy compared to Malay and Indian. A collaborative study by Rees et al. [14] and an autopsy study done by Jayalakshmi et al. [15] found the same result. The majority of patients in our study were within the age range of 70 to 79 years old. However, study by Khandapani et al. [10] found the patients with leprosy were mainly in the age range of 51 to 60 years old (30.0%).

Leprosy is one of the most prominent causes of disability among the communicable diseases [16]. The disease causes 51.2 percent of disability worldwide [17]. The prevalence of disability among patients with leprosy in the current study was 56.2 percent. This was higher when compared to a study by Metts et al [18] who found the prevalence was only 20.1 percent. The prevalence was different because both studies used different tools to assess the degree of disability among leprosy patients. Our study found that walking up the stairs was the most difficult task accounting for 50.7 percent and feeding assistance was the least difficult (1.4 percent) using Barthel’s Index for the disability assessment. Study by Sarkar et al. [18] found that bilateral feet were the most commonly involved site of the body. In addition, both sensory and motor nerve impairment were the commonest nature of disability. Furthermore, patients with leprosy with delayed diagnosis beyond 12 months had significantly higher grade-2 disabilities than diagnosed earlier [8]. Soomro et al. [9] found that the disabilities were due to lack of health education, delay in diagnosis and treatment.

In 2010, The Health Prevalence and Nutritional Status on Selected Leprosy Victims of Burla Town, Orissa, India reported that 90.1 percent of male and 88.6 percent of female patients suffered from severe malnutrition [4]. A study from Korea found that the nutrition and health status of ex-leprosy patients was marginal and their nutrient intakes were low [9]. In this study, it was found that there were around 10 percent of malnourished cases and almost 50 percent were at risk of malnutrition. However, the study by Khandapani et al. [10] found all leprosy patients in selected districts in India suffered from moderate to severe grades of malnutrition. The difference in these findings could be due to the large number of leprosy population were living in areas with improper sanitation due to low support from the government. Another study also concluded that the undernutrition (BMI < 18.5) was more common in people affected by leprosy than in those without leprosy [11].

The Nutritional Index score of patients more than 80 years old in our study was significantly lower compared to those aged less than 69 years old. These findings could be associated to difficulty in chewing secondary to tooth loss at old age. Secondly, we assumed that as a person ages, their sense of taste and smell would lessen, hence reducing their appetite. Thirdly, we suspected that as a person ages, they tend to suffer various diseases, which may reduce their choices of food and lead to malnutrition. Lastly, unemployment and loss of income may have reduced the expenditure on food. [9]. This finding was similar to the finding by Forster et al. [20] who concluded the increasing age was independently associated with poor nutritional status among older patients. Other factors such as gender and race showed no association.

The current study provided a link between physical disability and nutritional status. From the correlation between Nutritional Index status and the Barthel’s Index score, we could observe that an increase in Nutritional Index score would increase the Barthel’s Index score. Increasing score portrayed decrease in disability. The finding was similar to a study by Rao et al. [11] who concluded that the presence of disability made the incidence of undernutrition more likely. In Australia for instance, researchers discovered that the cured leprosy index case with physical deformity was more undernourished than index cases without deformity among leprosy patients [21]. Thus, we came to similar conclusion that one of the ways to reduce disability among this special group of population was by improving their nutritional status.

CONCLUSIONS

The prevalence of disability and the percentage of those with malnutrition and those at risk of malnutrition among leprosy patients were high. In addition, there was a strong positive correlation between the nutritional
status and the degree of disability. Measures must be taken to improve their nutritional status in order to increase their ability to be more dependent mostly among those who are of very old age. We promote public health nutritional intervention programmes to increase the awareness of leprosy patients, their carers, and the medical staff handling these patients.

Conflicts of Interest
Authors declare none.

Acknowledgements
We would like to acknowledge all patients who participated in this study, Dr. Saiah Abdullah and Pusat Kawalan Kusta Negara (PKKN) medical staff who gave us permission to conduct the study and Faculty of Medicine, Universiti Teknologi MARA for providing the equipment for this research. The study has been funded by Dana Pembudayaan Penyelidikan (RAGS), Universiti Teknologi MARA, Malaysia (600-RMI/RAGS 5/3 (86/2013).

REFERENCES
18. Sarkar J, Dasgupta A, Dutt D. Disability among new leprosy patients, an issue of concern: An institution based study in an endemic district for leprosy in the state of West Bengal, India. Indian J Dermatol Venereol Leprol. 2012; 78(3): 328-34.
19. Oh SY, Paik HY, Ju D. Dietary habits, food intake and functional outcomes in those with a
